11 research outputs found

    Simulation, performance and interference analysis of multi-user visible light communication systems

    Get PDF
    The emergence of new physical media such as optical wireless, and the ability to aggregate these new media with legacy networks motivate the study of heterogeneous network performance, especially with respect to the design of protocols to best exploit the characteristics of each medium. This study considers Visible Light Communications (VLC), which is expected to coexist with legacy and future radio frequency (RF) media. While most of the research on VLC has been done on optimizing the physical medium, research on higher network layers is only beginning to gain attention, requiring new analyses and tools for performance analysis. The first part of the dissertation concerns with developing a new ns3-based VLC module that can be used to study VLC-RF heterogeneous networks via simulation. The proposed ns3 module is developed based on existing models for intensity modulated LED signals operating as lighting units transmitting to optical receivers at indoor scales (meters). These models and the corresponding simulation model are validated using a testbed implemented with a software-defined radio (SDR) system, photodetector, phosphor-converted “white” LEDs, and under PSK and QAM modulation. Two scenarios are used in the validation of the VLC module: (i) using a receiver placed right bellow the transmitter with varying range, and (ii) using a receiver with a fixed range and varying angle of acceptance. Results indicate good correspondence between the simulated and actual testbed performance. Subsequently, it demonstrates how the VLC module can be used to predict the performance of a hybrid WiFi/VLC network simulated using the ns3 environment with UDP, TCP, and combined network traffic. The second part of the dissertation focuses on modeling interference at VLC system level based on variable pulse position modulation (VPPM) and variable on-off keying (VOOK) which are used in VLC to simultaneously provide lighting with dimming control as well as communication. The bit error performance of these modulation schemes is evaluated at VLC systems consisting of multiple transmitters-receivers pairs, where co-channels interference exists. The BER is derived by providing an in depth analysis that captures the signal structure of the interference in terms of the number of transmitters. This work dispenses with the Gaussian interference model which is not suitable when the number of interferers are few and the central limit theorem (CLT) cannot be applied. The result shows that under realistic small-room scenario, the analytical results closely match with that of simulation

    Performance Assessment of Dual-Polarized 5G Waveforms and Beyond in Directly Modulated DFB-Laser using Volterra Equalizer

    Get PDF
    International audienceWe investigate the performance of 25-Gbps dual-polarized orthogonal frequency division multiplexing (OFDM)-based modulation in a directly modulated distributed feedback (DFB)-laser over 25 km of single-mode fiber. A Volterra equalizer is used to compensate for the nonlinear effects of the optical fiber. The results show that FBMC-OQAM modulation outperforms OFDM, universal filtered multicarrier (UFMC), and generalized frequency division multiplexing (GFDM) waveforms. Indeed, a target bit error rate of similar to 3.8 x 10(-3) [forward error correction (FEC) limit] for FBMC, UFMC, OFDM, and GFDM can be achieved at -30.5, -26, -16, and -14.9 dBm, respectively. The effect of the DFB laser is also investigated for UFMC, OFDM, and GFDM, and they undergo a Q penalty of 2.44, 2.77, and 4.14 dB, respectively, at their FEC limit points. For FBMC-OQAM, the signal is perfectly recovered when excluding the DFB laser at -30.5 dBm. (C) 2020 Society of Photo-Optical Instrumentation Engineers (SPIE

    Design of XOR Photonic Gate using Highly Nonlinear Fiber

    No full text
    In this paper, a comprehensive design and simulation of an all-photonic XOR logic gate is proposed. The design is based on the third-order Kerr nonlinear effect in highly nonlinear fiber, i.e., utilizing the self-phase and cross-phase modulations phenomena. This work presents the first photonic logic gate based on highly nonlinear fiber component only that achieves a data rate of 20 Gbps. Moreover, the design is based on two input binary bit sequences, narrow pulsed by a Gaussian distribution as 8-bit incoming data streams. Also, optical cross connectors with different coupling coefficients are used to generate pump and probe signals and tuneable optical band pass filters are leveraged to perform the logic gate functionalities. Remarkable performance outcomes are concluded from the eye pattern diagram and bit error rate analyzers. Simulation results show that the proposed XOR optical logic gate design is achieved at very low power penalties, low bit error rates, a significant Q-factor, and high extinction ratios as compared to existing methods

    BRNN-LSTM for Initial Access in Millimeter Wave Communications

    No full text
    The use of beamforming technology in standalone (SA) millimeter wave communications results in directional transmission and reception modes at the mobile station (MS) and base station (BS). This results in initial beam access challenges, since the MS and BS are now compelled to perform spatial search to determine the best beam directions that return highest signal levels. The high number of signal measurements here prolongs access times and latencies, as well as increasing power and energy consumption. Hence this paper proposes a first study on leveraging deep learning schemes to simplify the beam access procedure in standalone mmWave networks. The proposed scheme combines bidirectional recurrent neural network (BRNN) and long short-term memory (LSTM) to achieve fast initial access times. Namely, the scheme predicts the best beam index for use in the next time step once a MS accesses the network, e.g., transition from sleep to active (or idle) modes. The scheme eliminates the need for beam scanning, thereby achieving ultra-low access times and energy efficiencies as compared to existing methods

    Instantaneous Beam Prediction Scheme against Link Blockage in mmWave Communications

    No full text
    Millimeter wave (mmWave) bands formulate the standalone (SA) operation mode in the new radio (NR) access technology of 5G systems. These bands rely on beamforming architectures to aggregate antenna array gains that compensate for dynamic channel fluctuations and propagation impairments. However, beamforming results in directional transmission and reception, thus resulting in beam management challenges, foremost initial access, handover, and beam blockage recovery. Here, beam establishment and maintenance must feature ultra-low latencies in the control and data planes to meet network specifications and standardization. Presently, existing schemes rely on arrays redundancy, multi-connectivity, such as dual-beam and carrier aggregation, and out-of-band information. These schemes still suffer from prolonged recovery times and aggregated power consumption levels. Along these lines, this work proposes a fast beam restoration scheme based on deep learning in SA mmWave networks. Once the primary beam is blocked, it predicts alternative beam directions in the next time frame without any reliance on out-of-band information. The scheme adopts long short-term memory (LSTM) due to the robust memory structure, which uses past best beam observations. The scheme achieves near-instantaneous recovery times, i.e., maintaining communications sessions without resetting beam scanning procedures

    Grating Lobes for Enhanced Scattering Intensity in Millimeter Wave Sparse Channels

    No full text
    Millimeter Wave bands suffer from various channel impairments, such as path loss and blockage sensitivity. Hence, mmWave channels have widely been termed as sparse channels, composed of limited number of rays and clusters. Therefore, analog beamforming architectures become less practical due to its single beam transmission, which can result in link failure due to blockage effects. However, analog beamforming requires very efficient power and energy consumption levels, as compared to digital and hybrid solutions. Hence in this paper, a novel multi-beam analog beamforming transmission technique is proposed that increases the scattering intensity in mmWave sparse channels. This in return allows analog beamforming channels to be increasingly rich-scattering. Namely, grating lobes are deliberately generated for an analog beamformer to increase the scattering intensity in non-line of sight environments, and hence increasing the number of scattering (rays and clusters) in the received signal power delay profile. Simulation results show that channel intensity significantly increases when grating lobes are enabled at one-wavelength antenna spacing, as compared to half-wavelength spacing

    Beam-Bundle Codebook for Highly Directional Access in mmWave Cellular Networks

    No full text
    corecore